

Derivation of a Covalent Radii Table From Open Crystallographic Data

Eglė Šidlauskaitė^{*a*}, Antanas Vaitkus^{*b*}, Andrius Merkys^{*b*}

^aFaculty of Medicine, Vilnius University, Vilnius, Lithuania

^bSector of Crystallography and Chemical Informatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania

equency

X-ray crystallography is able to determine the exact positions of atoms that constitute crystal structures [1], but cannot capture chemical bonding. Due to this, bonding is often determined using a heuristic which considers two atoms to be connected if the calculated distance between them is less or equal to the sum of their covalent radii. This distance is called a covalent bond length.

Derivation of covalent radii values

Histogram of interatomic distances in N–O class

OPEN READINGS

2023

Motivation

- ► Most popular covalent radii tables [2, 3, 4] are derived using data from proprietary databases that restrict the usage and spread of such derivative datasets.
- There is a need to develop an independent workflow that allows covalent radii tables to be automatically calculated and ensures reproducibility of the results.

Interatomic distance distribution

Interatomc distance distribution model (observed in N–O class)

> van der Waals interactions

- Method uses the best fitting Gaussian mixture model per Bayesian Information Criterion [7].
- Each pair of neighbouring components is examined to find the lowest density region in the distribution, which corresponds to be the van der Waals gap.
- Mean of the component preceding the van der Waals gap is selected as the maximum covalent bond length for each atom distance class.

Derived covalent radii table

- All interatomic distance observations are classified based on chemical elements between which the distance was measured.
- Van der Waals gap is an interval that separates peaks formed by covalent interactions from those formed mainly by van der Waals interactions [5].
- Interatomic distance distribution can be approximated by a Gaussian mixture model [5].

Data and filtering

485 000 entries from the Crystallography Open Database

Atomic number

Derived covalent radii values follow expected distribution trend based on the atomic number.

Conclusions

- Methodology for automated covalent radii derivation was developed.
- Derived covalent radii table is freely accessible online (via QR code on the left).
- Further research will be focused on testing the derived

(COD) [6] were analyzed.

Crystallographic models need to be filtered to ensure that only realistic distances between atoms are used in the study.

Crystal structure models published in the COD

Used in the study Extremely short / long observations

Suspected structural anomalies Identified structural disorder

covalent radii through real molecule connectivity validation.

Bibliography

- [1] Gražulis et al. Computing stoichiometric molecular composition from crystal structures. Journal of Applied Crystallography, 48(1):85-91, 2015.
- [2] Meng et al. Determination of molecular topology and atomic hybridization states from heavy atom coordinates. Journal of Computational Chemistry, 12(7):891-898, sep 1991.
- [3] Cordero et al. Covalent radii revisited. Dalton Transactions, 21:2832–2838, 2008.
- [4] Pyykkö et al. Molecular Single–Bond Covalent Radii for Elements 1–118. Chemistry—A European Journal, 15(1):186–197, 2008.
- Alvarez. A cartography of the van der Waals territories. *Dalton Transactions*, 42:8617–8636, 2015. [5]
- Gražulis et al. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for [6] world-wide collaboration. Nucleic Acids Research, 40(D1):D420–D427, Jan 2012.
- Schwarz. Estimating the dimension of a model. The Annals of Statistics, pages 461–464, 1978. [7]

This project has received funding from Vilnius University Science Support Fund (agreement No. MSF-JM-15/2021) and Research Council of Lithuania (agreement No. S-MIP-23-87)