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Software is ubiquitous...
... and so, it seems, are software bugs ...

Accumulating 0.1 s intervals for
100 h (in 24 bit binary) resulted
in missing the target by 0.3 s...

“/The/ program, which was not part
of a conventional data processing
package, converted the anomalous
pairs (I+ and I−) to (F− and F+),
thereby introducing a sign change.
/As a result/ the structures reported
had the wrong hand.”
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Understandable software

We want our source code to be readable! Not like this:

$s=2;
$d=500;
$w="A";$_='ZIsHPX=$s-Z*Z;$|C;J"sH=\nZ.";O!XNJ"0"x$d,"\n";exit}QZNpush
(F,Z%10PZIZD)}QXNpush(@W,X%10PXIXD)}subT{GMw>MW)OMw!=MWPZ=Mw;QE1NGZV>B)
OZV!=BPZK}1}subY{my(FPZ=0;X=Mw+1;QX>ZNXV+=ZV*S;X[E1]IXVDPXV%C0;E+}MYKO!X
[MY]PF}Q$dKNLF;S=2;@T=Y;@W=(0,0,@WPSC;QSNAOTNF=(KS,FPlast}S++}AZ[0]K;Z=0;S
=MW+1;QZ-SNB+=9-ZV;OB>C0NB-C0;Z[E1]K}E+}Q!U[MW]NMWK};JX[0]}J"\n";
';foreach$s(qw/ L(S,@TPLY; UV =1*.1 Z+ @Y return( qrt($s) =R(
prR -- @w= $# )
{ if( ); Te( int Ul Wl Xi [Z] Yi Zh wh $w
/){s;$w;$s;g;$w++}eval;

Daniel Rinehart, a self-uncompressing square root finder and custom bignum
library.

http://www.foo.be/docs/tpj/issues/vol2_3/tpj0203-0012.html
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Formal specifications

Formal methods:
1 Allow to specify software behaviour formally;
2 Allow to prove that software conforms to specification;
3 Allow to run the software with the proven properties;

Gražulis et al. Formally Validated S/W Melbourne, 2023 4 / 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Formal specifications

Formal methods:
1 Allow to specify software behaviour formally;
2 Allow to prove that software conforms to specification;
3 Allow to run the software with the proven properties;

function Build_Group (E : Ring_Element ) return Group
with
Post => Is_Group ( Build_Group ’ Result ) ;
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Formal specifications

Formal methods:
1 Allow to specify software behaviour formally;
2 Allow to prove that software conforms to specification;
3 Allow to run the software with the proven properties;

function Is_Group (G : Group) return Boolean
is ( Has_Identity (G) and then

All_Elements_Have_Inverses (G) and then
Is_Closed_On_Multiplication (G)

)
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Formal specifications

Formal methods:
1 Allow to specify software behaviour formally;
2 Allow to prove that software conforms to specification;
3 Allow to run the software with the proven properties;

function Is_Group (G : Group) return Boolean
is ( Has_Identity (G) and then

All_Elements_Have_Inverses (G) and then
Is_Closed_On_Multiplication (G)

)

function Is_Closed_On_Multiplication (G : Group) return Boolean
is ( for a l l E of G =>

( for a l l F of G => ( Belongs_To (E∗F, G ) ) ) )
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Formal specifications

Formal methods:
1 Allow to specify software behaviour formally;
2 Allow to prove that software conforms to specification;
3 Allow to run the software with the proven properties;

function Is_Group (G : Group) return Boolean
is ( Has_Identity (G) and then

All_Elements_Have_Inverses (G) and then
Is_Closed_On_Multiplication (G)

)

function Belongs_To (E : Element ; G : Group) return Boolean
is ( for some F of G => (E = F ) )
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Formal systems for software development

A non-exhaustive list of tools:

1 Proof assistants
Isabelle/HOL;
Coq/Gallina;

2 Software development systems (proovers)
Ada/SPARK
C#/Spec#;
C/Frama-C;
Daphny/Boogie;
Java/KeY;
Java/JML;
Java/EST;
Java/Sooth+ByteBack+Boogie
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Why Ada/SPARK?

1 Durable design – first designed in 1983!
2 Modern language – latest standard is Ada 2022;
3 Mostly backwards compatible;
4 Good F/LOSS compiler available – GNAT;
5 Ada is statically very strictly typed;
6 Programs are easy to read (Level (Ada) > Level (C));
7 Ada & SPARK has a rich type system;
8 Language level concurrent programming;
9 Produces fast optimised native code, links with any language;

10 SPARK subset takes computer arithmetic into account;
11 Not controlled by any private company;

Time-tested, safe and secure

Gražulis et al. Formally Validated S/W Melbourne, 2023 6 / 17
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Why is Ada not popular (yet)?

1 The language is complex and difficult to implement;
2 No good compilers in the 1990’s;
3 Procured by the DOD, used for “war fighting software”;
4 Poor academic outreach in the 20th century;

Gražulis et al. Formally Validated S/W Melbourne, 2023 7 / 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Why is Ada not popular (yet)?

1 The language is complex and difficult to implement;
2 The language is rich and convenient to program/design in;
3 No good compilers in the 2020’s;
4 Very nice compiler and dev. system available: gnat;
5 Procured by the DOD, used for “war fighting software”;
6 Used for mission-critical software (avionics, spacecraft ctrl., railways, plant

ctrl...)
7 Poor academic outreach in the 21st century;
8 SPARK allows formal verification of the code (!);
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The algorithm to work with

The group reconstruction algorithm: generate, when presented with a subset of
elements from some existing finite group G, a (smallest) subgroup H ≤ G
containing those elements:

{g1, ...,gn},∀gi : gi ∈ G → H ≤ G : Is_Group(H ) ∧ ∀gi : gi ∈ H

Uses of this algorithm:
check symmetry operators of a CIF file (for the COD);
determine symmetry of special position;
check whether an atom is on a sp. pos.;
constrain an atom to a sp. pos. for refinement (PD?);
analyse disorder around a special position;

(Grosse-Kunstleve 1999)
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Formal proofs of the the algorithms in use

inelegance: our tests show that adding these extra statements

just for the sake of easier proof costs us about 20% extra run

time, as demonstrated in Appendix C. It is thus highly desir-

able to remove them, but only if the algorithm can be shown to

work correctly afterwards. The simple proof of the closure

under the operation is no longer applicable to the optimized

algorithm in Fig. 2, however, since multiplication is only one-

sided, and the groups under consideration are not necessarily

commutative (and H is not always guaranteed to be a normal

subgroup, so we cannot even assume that H commutes with g

as a subgroup). Thus, we cannot immediately make the

induction step (v). If, however, we cannot guarantee that the

generated operator set H is closed under left- and right-sided

multiplication, we cannot guarantee that H is an algebraic

group.

The formal proof in Isabelle shows, though, that even

without the commutativity assumption the simplified (opti-

mized) algorithm stays correct. In particular, Lemmas 3 and 4

(Appendix A) give us the tools to demonstrate that all group

elements are eventually produced. After this proof, the algo-

rithm implementation can be safely simplified (and, as

expected, all tests give the same reconstructed groups for both

implementations).

3. Formal verification

3.1. Optimized algorithm

In this section we present a formal verification of the

presented space-group-builder algorithm. We start by putting

forward a high-level formalization of the algorithm and its

essential properties, followed by proof sketches of those

properties. At the end of the section, Theorem 2 formulates

and proves the main correctness property of the algorithm. All

of the verified statements were fully formalized and proven

within the Isabelle/HOL proof assistant. In Section 3.4 we

provide guidelines for mapping between the presented proof

sketches and the corresponding formal machine-checked

proofs in Isabelle/HOL.

3.2. Additional definitions

Using the core definitions, the space-group-builder algo-

rithm can be represented as the following high-level function:

BðH; gÞ ¼ H if g 2 H;
RðH; fggÞ if g =2 H;

�
ð1Þ

where B stands for the space-group-builder function, H is its

initial subgroup and g is the element H has to be expanded

with. Finally, the function R represents the recursive part of

the algorithm and is defined as

RðL;NÞ ¼
L if N ¼ ;;
RðL0;N0Þ if N 6¼ ;;where

L0 ¼ L [ fxg; x 2 N;
N0 ¼ ½N [ ðL0 � xÞ� n L0:

8><
>: ð2Þ

The recursive definition of R is to be understood as follows.

If the set N is empty, the value of R(L, N) is simply the given

set L; otherwise, two new sets are considered: the set L0

contains all the elements of L and one arbitrary element x

fromN, and the new setN0 is formed by taking all the elements

from the former set N, including all right products of the

elements from L0 with the chosen element x, and excluding all

the elements that are in L0. Essentially this means that the

element x is ‘transferred’ from N to L (thus obtaining L0), and
all new right products of L0 and x are added to N to construct

the newN0. The value of R on these new sets is then computed.

This recursive definition captures the behaviour of the algo-

rithm in Fig. 2 at lines 4–14. Since the expression R(H, {g}) (the

generated subgroup) will be essential in the proofs given

below, we introduce a shorthand name for it: R0 = R(H, {g}).

The presented formalization is more general than the

algorithm described in Fig. 2, because here the order in which

the elements are moved from the set N to L is arbitrary. To

formally demonstrate the correctness of such a generalized

algorithm, we need to prove that, for any finite group G with

initial subgroup H and arbitrary group element g, the

proposed algorithm generates a minimal subgroup that

includes both H and g. This property can be formulated as

jGj<1^H � G ^ g 2 G )
BðH; gÞ � G ^H [ fgg � BðH; gÞ ^
8J � G : H [ fgg � J ) BðH; gÞ � J: ð3Þ

Here |G| stands for the cardinality of the carrier set of the

underlying group G.

3.3. Sketch of the proof

In this section we provide a sketch of the proof of the

correctness of the space-group-builder algorithm, i.e. the

proof of the property (3). The complete formal machine-

checked proof is provided as an Isabelle/HOL theory in a

research papers
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Figure 2
The optimized simple space-group-builder (core) algorithm.

electronic reprint

that has enjoyed numerous republications (Halmos, 2017).

More formal and complete treatment is given by Paul Bernays

(1958). Modern notation follows contemporary discrete

mathematics textbooks (Rosen, 2012), some openly available

online (Doerr & Levasseur, 2021a,b). The set notation used in

the paper is summarized in Table 1.

APPENDIX E
Developing a proof in Isabelle

Formal proofs of program correctness, even for moderately

sized programs, can become long and involved, full of complex

details. This situation naturally calls for some kind of auto-

mation. Assistance may be provided by an interactive tool

(called a ‘theorem prover’ or a ‘proof assistant’) which records

and maintains a proof as it is constructed step by step. Such a

tool ensures the high accuracy and soundness needed in

complex detailed mathematical proofs. Furthermore,

mechanized logics (which these tools rely on) cannot allow any

‘hand-waving’ over matters of syntax or semantics.

The underlying tool logic can be easily extended by the

user. These extensions are organized into units called

‘theories’, which contain a number of definitions, axioms and

proven logical statements (‘theorems’ and ‘lemmas’). Proofs

of these theorems are facilitated by pre-defined ‘proof

methods’ (‘tactics’), encoding sound logical inferences that

can be applied to a potential theorem (‘goal’) to ascertain its

validity.

Isabelle is one such interactive proof assistant. It checks the

proof correctness, but the proof itself should be provided by

the user. The level of detail required in the proof depends on

the employed automation. The Isabelle proof assistant has two

main sources of automation: the available proof methods and

the proof search engine, called Sledgehammer. The former

allow us to automate proof construction using given facts (i.e.

the proof hypotheses and previously proven theorems) and

the latter allows us to automate the search for other usable

facts and proof methods for a given goal. In the following

example we show the basic workflow used while developing

the proof. The workflow is typical and is not tied to the space-

group-builder algorithm.

As an example we take a fragment of the builderRec_

produces_subgroup theorem which corresponds to the

cases (i)–(iv) in Theorem 2. At this point in the proof, the goal

is to show that R � G where R ¼ builderRec H fgg is the

result of the space-group-builder algorithm. This goal in

Isabelle is formulated as

The keyword have asserts a new fact. We can attempt to

prove this fact automatically by launching the Sledgehammer

tool after pointing a cursor right after the assertion. This

statement is too complex for Isabelle or Sledgehammer to

prove automatically, and thus we can mark it temporarily as

unproven using the keyword sorry. This allows us to work on

other parts of the proof before proving this assertion.

To proceed with this proof, we have to provide more details

on how to decompose it. In this case we have to consider the

subgroup definition and split the proof into four sub-goals

corresponding to the properties composing it:

research papers
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Table 1
Summary of logic and set notation used in the article.

Q and R are arbitrary statements, and A and B are arbitrary sets. The symbol
: binds stronger than other symbols, i.e. expression :R ^Q is interpreted as
ð:RÞ ^Q, not as :ðR ^QÞ. Parentheses are used to indicate operation
precedence where they are needed to avoid ambiguity.

Symbol Meaning

iff If and only if.
¼def Equal by definition; the left side is defined to be equal

to the right side.
^ Logical ‘and’; Q ^ R is true iff both Q and R are true.
_ Logical ‘or’; Q _ R is true iff at least one of Q or R is

true.
: Logical ‘not’;:Q is true ifQ is false and is false ifQ is

true.
) Logical implication;Q) R is true iff R is true or Q is

false, i.e. Q) R ¼def R _ :Q.
, Logical equivalence; Q, R is true iff R and Q are

either both true or both false:
Q, R ¼def ðR ^QÞ _ ð:R ^ :QÞ. For instance,
ðR, QÞ , ððR) QÞ ^ ðQ) RÞÞ.

8x : P(x) For all x the predicate P(x) is true.
9 x : P(x) There exists x such that the predicate P(x) is true.
A = {a, b, c, d} Set A is composed of elements a, b, c and d
{x | P(x)} A set of all elements x for which the predicate P(x) is

true.
B = {x 2 A | P(x)} Set B is the set of all elements from the set A for

which the predicate P(x) is true.
x 2 A Element x belongs to set A.
x 62 A Element x does not belong to set A;

x 62 A ¼def :ðx 2 AÞ.
; The empty set – the unique set that contains no

elements; 8x : x 62 ;.
(a, b) An ordered pair with elements a and b; ða; bÞ ¼def

ffag; fa; bgg (Kuratowski, 1921). An important
property holds:
ða; bÞ ¼ ðc; dÞ , ðða ¼ bÞ ^ ðb ¼ dÞÞ.

(a, b, c) An ordered triple; ða; b; cÞ ¼def ða; ðb; cÞÞ.
A [ B Set union – a set of all elements that belong to either

A or B (or both); A [ B ¼def fx j x 2 A _ x 2 Bg.
A \ B Set intersection – a set of all elements that belong to

both A and B; A \ B ¼def fx j x 2 A ^ x 2 Bg.
A n B Set difference – a set of elements from A that are not

in B; A n B ¼def fx 2 A j x 62 Bg.
A � B A is a subset ofB – all elements ofA are also elements

of B; A � B ¼def 8x : ðx 2 A) x 2 BÞ.
A = B Sets A and B are equal, i.e. they are the same set;

A ¼ B ¼def 8x : ðx 2 A, x 2 BÞ. For instance,
A ¼ B, ðA � B ^ B � AÞ.

(�x, �y, �z) A symmetry operator represented as an ordered
triple of general position coordinate expressions.

{(x, y, z), (�x, � y, z)} A set of symmetry operators.

electronic reprint

for my $group_symop (@{$self->{symops}}) {
do {

my $product =
snap_to_crystallographic(

symop_modulo_1(
symop_mul( $group_symop, $test_symop )

)
);

my $product_key = string_from_symop( $product );
if( !exists $self->{symop_hash}{$product_key} ) {

(Petrauskas et al. 2022)
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Group theory in Ada/SPARK

examples/group_theory.ads
pragma Spark_Mode (On) ;

generic
type Element is private ;
Ident i ty : Element ;
with function ” ∗ ” (E, F: Element ) return Element is <>;

function Is_Closed_On_Multiplication (G : Group) return Boolean
is ( for a l l E of G =>

( for a l l F of G => ( Belongs_To (E∗F, G ) ) ) )
with Ghost ;

function All_Elements_Have_Inverses (G : Group) return Boolean
is ( for a l l E of G => Has_Inverse (E, G) )

with Ghost ;

function Is_Group (G : Group) return Boolean
is ( Has_Identity (G) and then

All_Elements_Have_Inverses (G) and then
Is_Closed_On_Multiplication (G)

)
with Ghost ;
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Automatic compilation of proven code
Ada and SPARK

examples/make_group.ads
8 type Ring_Element is mod 37;

29 function Build_Group (E : Ring_Element ) return Group
30 with
31 Post => Is_Group ( Build_Group ’ Result ) ;

gnatprove -P main.gpr --report=all make_group.adb
make_group.ads:23:14: info: postcondition proved
make_group.ads:27:14: info: postcondition proved
make_group.ads:31:14: info: postcondition proved
group_theory.ads:16:15: info: postcondition proved, in instantiation at make_group.ads:16

saulius@tasmanijos-velnias spacegroups/ $ ./run_make_group 8
(1, 8, 27, 31, 26, 23, 36, 29, 10, 6, 11, 14)

saulius@tasmanijos-velnias spacegroups/ $ ./run_make_group 7
(1, 7, 12, 10, 33, 9, 26, 34, 16)
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Current assumptions
... need to be made

function Build_Group (G : Group; E : Ring_Element ) return Group

for I in N’ First . . NN loop
declare

H : Ring_Element := N ( I ) ∗ T ;
begin

i f not Contains (N (N’ First . .NN) , H) then
Add_Element (N, NN, H) ; −− Add the element to the growing group
Add_Element ( L , NL, H) ; −− Add the element to the candidate l i s t

end i f ;
end ;

end loop ;

pragma Assume ( All_Elements_Have_Inverses (Group (N (N’ First . . NN ) ) ) ) ;
pragma Assume ( Is_Closed_On_Multiplication (Group (N (N’ First . . NN ) ) ) ) ;

return Group (N (N’ First . . NN) ) ;
end Build_Group ;
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Current assumptions
... need to be made

function Build_Group (G : Group; E : Ring_Element ) return Group

for I in N’ First . . NN loop
declare

H : Ring_Element := N ( I ) ∗ T ;
begin

i f not Contains (N (N’ First . .NN) , H) then
Add_Element (N, NN, H) ; −− Add the element to the growing group
Add_Element ( L , NL, H) ; −− Add the element to the candidate l i s t

end i f ;
end ;

end loop ;

pragma Assume ( All_Elements_Have_Inverses (Group (N (N’ First . . NN ) ) ) ) ;
pragma Assume ( Is_Closed_On_Multiplication (Group (N (N’ First . . NN ) ) ) ) ;

return Group (N (N’ First . . NN) ) ;
end Build_Group ;
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Conclusions

Ada/SPARK provide production-ready F/LOSS dev. environment;
Software functions (Pre/Post) can be formally specified in SPARK;
Certain properties can be proved automatically; others – with explicit
assumptions;
More properties will be possible to prove in the future;
Working (library) code can be generated from the verified source;
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Vision for the future

A reusable F/LOSS library of verified crystallographic algorithms;
Stable and future-proof;
Compatible with any languages and platforms (Ada, C(++), Go, Julia, Rust,
Perl, Python, WebAssembly, etc.);
Make software readable and understandable;
Make software a part of documentation for scientifc inferences along with
human readable texts (papers, presentations, etc.) and databases (COD, etc.)
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Thank you!

http://en.wikipedia.org/wiki/Topaz http://www.crystallography.net/2207377.html

A path to freedom: GNU → Linux → Ubuntu → MySQL → R → LATEX→ TikZ → Beamer
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