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Software is ubiquitous...

. and so, it seems, are software bugs ...
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Software is ubiquitous...

. and so, it seems, are software bugs ...

EFI Shell version 2.31 [«
Current running made
map: Cannot find requ 1 map name

Press ESC in 1 seconds tc Kip ste
= 3 ! SKip startup.nsh, :
Shell> g
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Software is ubiquitous...

. and so, it seems, are software bugs ...

EFI Shell version 2.31 [4.851)
Current running mode 1.1
map: Cannot find required map name.

Pres: 3 econds to skip
= s to skip startup.nsh, :
it tup.nsh, 4

b 5
Accumulating 0.1 s intervals for
100 h (in 24 bit binary) resulted
in missing the target by 0.3 s...
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Software is ubiquitous...

. and so, it seems, are software bugs ...

EFI Shell version 2.31

Current running made

map: Cannot find require

map name.

Press 3 econds to skip startup.nsh, 4

Shell>

“/The/ program, which was not part
of a conventional data processing
package, converted the anomalous
pairs (I+ and I-) to (F- and F+),
thereby introducing a sign change.
/As aresult/ the structures reported
had the wrong hand.”

Grazulis et al.
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Accumulating 0.1 s intervals for
100 h (in 24 bit binary) resulted
in missing the target by 0.3 s...
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Understandable software

We want our source code to be readable! Not like this:

$s=2;

$d4=500;
$w="A";$_='ZIsHPX=$s-Z*Z;$|C;J"sH=\nZ.";0!XNJ"0"x$d, "\n" ; exit}QZNpush
(F,Z%10PZIZD) }QXNpush (@W, X%, 10PXIXD) }subT{GMw>MW) OMw ! =MWPZ=Mw ; QEINGZV>B)
0ZV!=BPZK}1}subY{my (FPZ=0; X=Mu+1 ; QX>ZNXV+=ZV*S ; X [E1] IXVDPXVY%CO; E+}MYKO ! X
[MY]PF}Q$dKNLF; S=2;@T=Y;@W=(0,0,@WPSC; QSNAOTNF=(KS,FPlast}S++}AZ[0]K;Z=0;S
=MW+1; QZ-SNB+=9-ZV ; 0B>CONB-CO0; Z [E1]K}E+}Q! U [MW] NMWK} ; JX[01}J"\n" ;
';foreach$s(qw/ L(S,@TPLY; UV =1x.1 Z+ @Y return( qrt($s) =R(

prR -- @u= $# )

{ if( ); Te( int Ul W1 Xi [Z] Yi Zh wh $w

/){s;$w;$s;g;$w++}eval;
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Daniel Rinehart, a self-uncompressing square root finder and custom bignum
library.

http://www.foo.be/docs/tpj/issues/vol2_3/tpj0203-0012.html
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Formal specifications

Formal methods:
@ Allow to specify software behaviour formally;
© Allow to prove that software conforms to specification;
@ Allow to run the software with the proven properties;
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Formal specifications

Formal methods:
@ Allow to specify software behaviour formally;
© Allow to prove that software conforms to specification;
@ Allow to run the software with the proven properties;

function Build_Group (E : Ring Element) return Group
with
Post => Is_Group (Build_Group’Result);
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Formal specifications

Formal methods:
@ Allow to specify software behaviour formally;
© Allow to prove that software conforms to specification;
@ Allow to run the software with the proven properties;

function Is_Group (G : Group) return Boolean

is (Has_Identity (G) and then
All_Elements_Have_Inverses (G) and then
Is_Closed_On_Multiplication (G)
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Formal specifications

Formal methods:
@ Allow to specify software behaviour formally;
© Allow to prove that software conforms to specification;
@ Allow to run the software with the proven properties;

function Is_Group (G : Group) return Boolean
is (Has_Identity (G) and then
All_Elements_Have_Inverses (G) and then
Is_Closed_On_Multiplication (G)
)

function Is_Closed_On_Multiplication (G : Group) return Boolean
is (for all E of G =>
(for all F of G => (Belongs_To (ExF, G))))
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Formal specifications

Formal methods:
@ Allow to specify software behaviour formally;
© Allow to prove that software conforms to specification;
@ Allow to run the software with the proven properties;

function Is_Group (G : Group) return Boolean
is (Has_Identity (G) and then
All_Elements_Have_Inverses (G) and then
Is_Closed_On_Multiplication (G)
)

function Belongs_To (E : Element; G : Group) return Boolean
is (for some F of G => (E = F))
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Formal systems for software development

A non-exhaustive list of tools:

@ Proof assistants

o Isabelle/HOL;
o Coq/Gallina;

© Software development systems (proovers)

o Ada/SPARK

C#/Spec#;

C/Frama-C;

Daphny/Boogie;

Java/KeY;

Java/JML;

Java/EST;
Java/Sooth+ByteBack+Boogie
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Why Ada/SPARK?

@ Durable design - first designed in 1983!

© Modern language — latest standard is Ada 2022;
@ Mostly backwards compatible;

© Good F/LOSS compiler available — GNAT;

© Ada is statically very strictly typed;

© Programs are easy to read (Level (Ada) > Level (C));
@ Ada & SPARK has a rich type system;

@ Language level concurrent programming;

@ Produces fast optimised native code, links with any language;
@ SPARK subset takes computer arithmetic into account;
@ Not controlled by any private company;
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Why is Ada not popular (yet)?

@ The language is complex and difficult to implement;

© No good compilers in the 1990’s;

© Procured by the DOD, used for “war fighting software”;
@ Poor academic outreach in the 20th century;
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Why is Ada not popular (yet)?

O Thel ; 1 | diffieu] ol :
© The language is rich and convenient to program/design in;
© No-good-compilers-inthe2020’s;

© Very nice compiler and dev. system available: gnat;

@ Procured by the DOD, used for “war fighting software”;

Q@ Used for mission-critical software (avionics, spacecraft ctrl., railways, plant
ctrl...)

@ Poor academic outreach in the 21st century;
@ SPARK allows formal verification of the code (!);
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The algorithm to work with

The group reconstruction algorithm: generate, when presented with a subset of
elements from some existing finite group G, a (smallest) subgroup H < G
containing those elements:

{91,.,9n},Vgi: gi€ G> H< G:Is_Group(H) AVgi: gi€ H

Uses of this algorithm:
@ check symmetry operators of a CIF file (for the COD);
o determine symmetry of special position;
@ check whether an atom is on a sp. pos.;
@ constrain an atom to a sp. pos. for refinement (PD?);
@ analyse disorder around a special position;
(Grosse-Kunstleve 1999)
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Formal proofs of the the algorithms in use

Require: H — a subgroup of a finite group G 1: have ”subgroup R G”
Require: g — an element of the finite group G, g € G
Ensure: The list L of the operators of a subgroup L < G without duplicates
Ensure: L contains both g and the elements of H 3. have R_subset: "R C carrier G” sorry
1: procedure SIMPLEBUILDER(H, g)
1> Build a space group generated by H and g

2: proof -

4 moreover have Rom_closed: "Az y. [t € R; y € R] = xz®y € R’ sorry

2 L« [e,hy, ha, ..., hn], where Vi. hy € H 5: moreover have R_one_closed: ”1 € R” sorry
3, Lyew < [9]
4 while Lyey is not empty do 6: moreover have R.m_inv_closed: "Az. z € R = inv z € R” sorry
5 g+ head(Lpew) T ultimately show ”subgroup R G” by (simp add: subgroup._def)
6: Lpew < tail(Lnew)
7 L + append(L, ¢') 8: qed
8 for all ' € L do
9 g «~hed for my $group_symop (Q@{$self->{symops}}) {
10: if ¢” ¢ LU Lyey then do {
11: Lnew +— append(Lnew, g”) my $product =
19: end if snap_to_crystallographic(
13 end for symop_modulo_1(
. symop_mul ( $group_symop, $test_symop )
14: end while )
15: return L );

my $product_key = string_from_symop( $product );

16: end procedure
if ( lexists $self->{symop_hash}{$product_key} ) {

Figure 2
The optimized simple space-group-builder (core) algorithm.

(Petrauskas et al. 2022)
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Group theory in Ada/SPARK

examples/group_theory.ads

pragma Spark_Mode (On):

generic
type Element is private;
Identity : Element;
with function "x” (E, F: Element) return Element is <>;

function Is_Closed_On_Multiplication (G : Group) return Boolean
is (for all E of G =>
(for all F of G => (Belongs_To (E«F, G))))
with Ghost;

function All_Elements_Have_Inverses (G : Group) return Boolean
is (for all E of G => Has_Inverse (E, G))
with Ghost:

function Is_Group (G : Group) return Boolean
is (Has_Identity (G) and then
All_Elements_Have_Inverses (G) and then
Is_Closed_On_Multiplication (G)
)
with Ghost;
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Automatic compilation of proven code

Ada and SPARK

examples/make_group.ads

8 H type Ring Element is mod 37;

29 function Build_Group (E : Ring_Element) return Group
30 with

31 Post => Is_Group (Build_Group’Result);

gnatprove -P main.gpr --report=all make_group.adb

make_group.ads:23:14: info: postcondition proved
make_group.ads:27:14: info: postcondition proved
make_group.ads:31:14: info: postcondition proved
group_theory.ads:16:15: info: postcondition proved, in instantiation at make_group.ads:16

saulius@tasmanijos-velnias spacegroups/ $ ./run_make_group 8
(1, 8, 27, 31, 26, 23, 36, 29, 10, 6, 11, 14)

saulius@tasmanijos-velnias spacegroups/ $ ./run_make_group 7
(1, 7, 12, 10, 33, 9, 26, 34, 16)
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Current assumptions

. need to be made

Hfunction Build_Group (G : Group; E : Ring_Element) return Group

for I in N’ First .. NN loop
declare
H : Ring_Element := N (I) = T;
begin
if not Contains (N (N’ First..NN), H) then
Add_Element (N, NN, H); — Add the element to the growing group
Add_Element (L, NL, H); — Add the element to the candidate list
end if;
end;
end loop;

Grazulis et al.
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Current assumptions

. need to be made

Hfunction Build_Group (G : Group; E : Ring_Element) return Group

for [ in N’ First .. NN loop
declare
H : Ring_Element := N (I) = T;
begin
if not Contains (N (N’ First..NN), H) then
Add_Element (N, NN, H); — Add the element to the growing group
Add_Element (L, NL, H); — Add the element to the candidate list
end if;
end;
end loop;

pragma Assume (All_Elements_Have_Inverses (Group (N (N’First .. NN)
pragma Assume (Is_Closed_On_Multiplication (Group (N (N’ First

return Group (N (N’ First .. NN));
end Build_Group;
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Conclusions

@ Ada/SPARK provide production-ready F/LOSS dev. environment;
@ Software functions (Pre/Post) can be formally specified in SPARK;

e Certain properties can be proved automatically; others — with explicit
assumptions;

@ More properties will be possible to prove in the future;
@ Working (library) code can be generated from the verified source;
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Vision for the future

@ A reusable F/LOSS library of verified crystallographic algorithms;
@ Stable and future-proof;

e Compatible with any languages and platforms (Ada, C(++), Go, Julia, Rust,
Perl, Python, WebAssembly, etc.);

@ Make software readable and understandable;

@ Make software a part of documentation for scientifc inferences along with
human readable texts (papers, presentations, etc.) and databases (COD, etc.)
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