Towards the formally validated crystallographic software

S. Grazulis A. Merkys A. Vaitkus K. Petrauskas L. Laibinis

Melbourne, 2023

Vilnius University
Institute of Biotechnology, Life Sciences Center
Institute of Informatics, Faculty of Mathematics and Computer Science

o S, oWV,
lg % §~ -1579 - %6;\
z 2 s z
3 § 2 g
e, & 5y &
% egam %’SITAS \l‘év
Id: slides.tex 2252 2023-08-26 00:47:37Z saulius August 26, 2023

Grazulis et al. Formally Validated S/W Melbourne, 2023 1/17

http://creativecommons.org/licenses/by-sa/4.0/

Software is ubiquitous...

. and so, it seems, are software bugs ...

Grazulis et al. Formally Validated S/W Melbourne, 2023 2/17

Software is ubiquitous...

. and so, it seems, are software bugs ...

EFI Shell version 2.31 [«
Current running made
map: Cannot find requ 1 map name

Press ESC in 1 seconds tc Kip ste
= 3 ! SKip startup.nsh, :
Shell> g

Formally Validated S/W Melbourne, 2023 2/17

Grazulis et al.

Software is ubiquitous...

. and so, it seems, are software bugs ...

EFI Shell version 2.31 [4.851)
Current running mode 1.1
map: Cannot find required map name.

Pres: 3 econds to skip
= s to skip startup.nsh, :
it tup.nsh, 4

b 5
Accumulating 0.1 s intervals for
100 h (in 24 bit binary) resulted
in missing the target by 0.3 s...

Formally Validated S/W Melbourne, 2023

Grazulis et al.

Software is ubiquitous...

. and so, it seems, are software bugs ...

EFI Shell version 2.31

Current running made

map: Cannot find require

map name.

Press 3 econds to skip startup.nsh, 4

Shell>

“/The/ program, which was not part
of a conventional data processing
package, converted the anomalous
pairs (I+ and I-) to (F- and F+),
thereby introducing a sign change.
/As aresult/ the structures reported
had the wrong hand.”

Grazulis et al.

Z £ - N
Accumulating 0.1 s intervals for
100 h (in 24 bit binary) resulted
in missing the target by 0.3 s...

Formally Validated S/W

Melbourne, 2023

Understandable software

We want our source code to be readable! Not like this:

$s=2;

$d4=500;
$w="A";$_='ZIsHPX=$s-Z*Z;$|C;J"sH=\nZ.";0!XNJ"0"x$d, "\n" ; exit}QZNpush
(F,Z%10PZIZD) }QXNpush (@W, X%, 10PXIXD) }subT{GMw>MW) OMw ! =MWPZ=Mw ; QEINGZV>B)
0ZV!=BPZK}1}subY{my (FPZ=0; X=Mu+1 ; QX>ZNXV+=ZV*S ; X [E1] IXVDPXVY%CO; E+}MYKO ! X
[MY]PF}Q$dKNLF; S=2;@T=Y;@W=(0,0,@WPSC; QSNAOTNF=(KS,FPlast}S++}AZ[0]K;Z=0;S
=MW+1; QZ-SNB+=9-ZV ; 0B>CONB-CO0; Z [E1]K}E+}Q! U [MW] NMWK} ; JX[01}J"\n" ;
';foreach$s(qw/ L(S,@TPLY; UV =1x.1 Z+ @Y return(qrt($s) =R(

prR -- @u= $#)

{ if(); Te(int Ul W1 Xi [Z] Yi Zh wh $w

/){s;$w;$s;g;$w++}eval;

Grazulis et al. Formally Validated S/W Melbourne, 2023

http://www.foo.be/docs/tpj/issues/vol2_3/tpj0203-0012.html

Understandable software

We want our source code to be readable! Not like this:

$s=2;

$d4=500;
$w="A";$_='ZIsHPX=$s-Z*Z;$|C;J"sH=\nZ.";0!XNJ"0"x$d, "\n" ; exit}QZNpush
(F,Z%10PZIZD) }QXNpush (@W, X%, 10PXIXD) }subT{GMw>MW) OMw ! =MWPZ=Mw ; QEINGZV>B)
0ZV!=BPZK}1}subY{my (FPZ=0; X=Mu+1 ; QX>ZNXV+=ZV*S ; X [E1] IXVDPXVY%CO; E+}MYKO ! X
[MY]PF}Q$dKNLF; S=2;@T=Y;@W=(0,0,@WPSC; QSNAOTNF=(KS,FPlast}S++}AZ[0]K;Z=0;S
=MW+1; QZ-SNB+=9-ZV ; 0B>CONB-CO0; Z [E1]K}E+}Q! U [MW] NMWK} ; JX[01}J"\n" ;
';foreach$s(qw/ L(S,@TPLY; UV =1x.1 Z+ @Y return(qrt($s) =R(

prR -- @u= $#)

{ if(); Te(int Ul W1 Xi [Z] Yi Zh wh $w

/){s;$w;$s;g;$w++}eval;

Daniel Rinehart, a self-uncompressing square root finder and custom bignum
library.

http://www.foo.be/docs/tpj/issues/vol2_3/tpj0203-0012.html

Grazulis et al. Formally Validated S/W Melbourne, 2023 3/17

http://www.foo.be/docs/tpj/issues/vol2_3/tpj0203-0012.html

Formal specifications

Formal methods:
@ Allow to specify software behaviour formally;
© Allow to prove that software conforms to specification;
@ Allow to run the software with the proven properties;

Grazulis et al. Formally Validated S/W Melbourne, 2023 4/17

Formal specifications

Formal methods:
@ Allow to specify software behaviour formally;
© Allow to prove that software conforms to specification;
@ Allow to run the software with the proven properties;

function Build_Group (E : Ring Element) return Group
with
Post => Is_Group (Build_Group’Result);

Grazulis et al. Formally Validated S/W Melbourne, 2023

Formal specifications

Formal methods:
@ Allow to specify software behaviour formally;
© Allow to prove that software conforms to specification;
@ Allow to run the software with the proven properties;

function Is_Group (G : Group) return Boolean

is (Has_Identity (G) and then
All_Elements_Have_Inverses (G) and then
Is_Closed_On_Multiplication (G)

Grazulis et al. Formally Validated S/W Melbourne, 2023

Formal specifications

Formal methods:
@ Allow to specify software behaviour formally;
© Allow to prove that software conforms to specification;
@ Allow to run the software with the proven properties;

function Is_Group (G : Group) return Boolean
is (Has_Identity (G) and then
All_Elements_Have_Inverses (G) and then
Is_Closed_On_Multiplication (G)
)

function Is_Closed_On_Multiplication (G : Group) return Boolean
is (for all E of G =>
(for all F of G => (Belongs_To (ExF, G))))

Grazulis et al. Formally Validated S/W Melbourne, 2023

Formal specifications

Formal methods:
@ Allow to specify software behaviour formally;
© Allow to prove that software conforms to specification;
@ Allow to run the software with the proven properties;

function Is_Group (G : Group) return Boolean
is (Has_Identity (G) and then
All_Elements_Have_Inverses (G) and then
Is_Closed_On_Multiplication (G)
)

function Belongs_To (E : Element; G : Group) return Boolean
is (for some F of G => (E = F))

Grazulis et al. Formally Validated S/W Melbourne, 2023

Formal systems for software development

A non-exhaustive list of tools:

@ Proof assistants

o Isabelle/HOL;
o Coq/Gallina;

© Software development systems (proovers)

o Ada/SPARK

C#/Spec#;

C/Frama-C;

Daphny/Boogie;

Java/KeY;

Java/JML;

Java/EST;
Java/Sooth+ByteBack+Boogie

Grazulis et al. Formally Validated S/W Melbourne, 2023 5/17

Formal systems for software development

A non-exhaustive list of tools:

@ Proof assistants

o Isabelle/HOL;
o Coq/Gallina;

© Software development systems (proovers)

o Ada/SPARK

C#/Spec#;

C/Frama-C;

Daphny/Boogie;

Java/KeY;

Java/JML;

Java/EST;
Java/Sooth+ByteBack+Boogie

Grazulis et al. Formally Validated S/W Melbourne, 2023 5/17

Why Ada/SPARK?

@ Durable design - first designed in 1983!

© Modern language — latest standard is Ada 2022;
@ Mostly backwards compatible;

© Good F/LOSS compiler available — GNAT;

© Ada is statically very strictly typed;

© Programs are easy to read (Level (Ada) > Level (C));
@ Ada & SPARK has a rich type system;

@ Language level concurrent programming;

@ Produces fast optimised native code, links with any language;
@ SPARK subset takes computer arithmetic into account;
@ Not controlled by any private company;

Grazulis et al. Formally Validated S/W Melbourne, 2023

Why is Ada not popular (yet)?

@ The language is complex and difficult to implement;

© No good compilers in the 1990’s;

© Procured by the DOD, used for “war fighting software”;
@ Poor academic outreach in the 20th century;

Grazulis et al. Formally Validated S/W Melbourne, 2023

Why is Ada not popular (yet)?

O Thel ; 1 | diffieu] ol :
© The language is rich and convenient to program/design in;
© No-good-compilers-inthe2020’s;

© Very nice compiler and dev. system available: gnat;

@ Procured by the DOD, used for “war fighting software”;

Q@ Used for mission-critical software (avionics, spacecraft ctrl., railways, plant
ctrl...)

@ Poor academic outreach in the 21st century;
@ SPARK allows formal verification of the code (!);

Grazulis et al. Formally Validated S/W Melbourne, 2023 7/17

Why is Ada not popular (yet)?

O Thel ; 1 | diffieu] ol :
© The language is rich and convenient to program/design in;
© No-good-compilers-inthe2020’s;

© Very nice compiler and dev. system available: gnat;

@ Procured by the DOD, used for “war fighting software”;

Q@ Used for mission-critical software (avionics, spacecraft ctrl., railways, plant
ctrl...)

@ Poor academic outreach in the 21st century;
@ SPARK allows formal verification of the code (!);

Grazulis et al. Formally Validated S/W Melbourne, 2023 7/17

The algorithm to work with

The group reconstruction algorithm: generate, when presented with a subset of
elements from some existing finite group G, a (smallest) subgroup H < G
containing those elements:

{91,.,9n},Vgi: gi€ G> H< G:Is_Group(H) AVgi: gi€ H

Uses of this algorithm:
@ check symmetry operators of a CIF file (for the COD);
o determine symmetry of special position;
@ check whether an atom is on a sp. pos.;
@ constrain an atom to a sp. pos. for refinement (PD?);
@ analyse disorder around a special position;
(Grosse-Kunstleve 1999)

Grazulis et al. Formally Validated S/W Melbourne, 2023

Formal proofs of the the algorithms in use

Require: H — a subgroup of a finite group G 1: have ”subgroup R G”
Require: g — an element of the finite group G, g € G
Ensure: The list L of the operators of a subgroup L < G without duplicates
Ensure: L contains both g and the elements of H 3. have R_subset: "R C carrier G” sorry
1: procedure SIMPLEBUILDER(H, g)
1> Build a space group generated by H and g

2: proof -

4 moreover have Rom_closed: "Az y. [t € R; y € R] = xz®y € R’ sorry

2 L« [e,hy, ha, ..., hn], where Vi. hy € H 5: moreover have R_one_closed: ”1 € R” sorry
3, Lyew < [9]
4 while Lyey is not empty do 6: moreover have R.m_inv_closed: "Az. z € R = inv z € R” sorry
5 g+ head(Lpew) T ultimately show ”subgroup R G” by (simp add: subgroup._def)
6: Lpew < tail(Lnew)
7 L + append(L, ¢') 8: qed
8 for all ' € L do
9 g «~hed for my $group_symop (Q@{$self->{symops}}) {
10: if ¢” ¢ LU Lyey then do {
11: Lnew +— append(Lnew, g”) my $product =
19: end if snap_to_crystallographic(
13 end for symop_modulo_1(
. symop_mul ($group_symop, $test_symop)
14: end while)
15: return L);

my $product_key = string_from_symop($product);

16: end procedure
if (lexists $self->{symop_hash}{$product_key}) {

Figure 2
The optimized simple space-group-builder (core) algorithm.

(Petrauskas et al. 2022)

Formally Validated S/W Melbourr

Group theory in Ada/SPARK

examples/group_theory.ads

pragma Spark_Mode (On):

generic
type Element is private;
Identity : Element;
with function "x” (E, F: Element) return Element is <>;

function Is_Closed_On_Multiplication (G : Group) return Boolean
is (for all E of G =>
(for all F of G => (Belongs_To (E«F, G))))
with Ghost;

function All_Elements_Have_Inverses (G : Group) return Boolean
is (for all E of G => Has_Inverse (E, G))
with Ghost:

function Is_Group (G : Group) return Boolean
is (Has_Identity (G) and then
All_Elements_Have_Inverses (G) and then
Is_Closed_On_Multiplication (G)
)
with Ghost;

Grazulis et al. Formally Validated S/W

Automatic compilation of proven code

Ada and SPARK

examples/make_group.ads

8 H type Ring Element is mod 37;

29 function Build_Group (E : Ring_Element) return Group
30 with

31 Post => Is_Group (Build_Group’Result);

gnatprove -P main.gpr --report=all make_group.adb

make_group.ads:23:14: info: postcondition proved
make_group.ads:27:14: info: postcondition proved
make_group.ads:31:14: info: postcondition proved
group_theory.ads:16:15: info: postcondition proved, in instantiation at make_group.ads:16

saulius@tasmanijos-velnias spacegroups/ $./run_make_group 8
(1, 8, 27, 31, 26, 23, 36, 29, 10, 6, 11, 14)

saulius@tasmanijos-velnias spacegroups/ $./run_make_group 7
(1, 7, 12, 10, 33, 9, 26, 34, 16)

Formally Validated S/W

Melbourne,

Current assumptions

. need to be made

Hfunction Build_Group (G : Group; E : Ring_Element) return Group

for I in N’ First .. NN loop
declare
H : Ring_Element := N (I) = T;
begin
if not Contains (N (N’ First..NN), H) then
Add_Element (N, NN, H); — Add the element to the growing group
Add_Element (L, NL, H); — Add the element to the candidate list
end if;
end;
end loop;

Grazulis et al.

Formally Validated S/W

Melbourne, 2023 12 /17

Current assumptions

. need to be made

Hfunction Build_Group (G : Group; E : Ring_Element) return Group

for [in N’ First .. NN loop
declare
H : Ring_Element := N (I) = T;
begin
if not Contains (N (N’ First..NN), H) then
Add_Element (N, NN, H); — Add the element to the growing group
Add_Element (L, NL, H); — Add the element to the candidate list
end if;
end;
end loop;

pragma Assume (All_Elements_Have_Inverses (Group (N (N’First .. NN)
pragma Assume (Is_Closed_On_Multiplication (Group (N (N’ First

return Group (N (N’ First .. NN));
end Build_Group;

Grazulis et al.

Formally Validated S/W

Melbourne, 2023

Conclusions

@ Ada/SPARK provide production-ready F/LOSS dev. environment;
@ Software functions (Pre/Post) can be formally specified in SPARK;

e Certain properties can be proved automatically; others — with explicit
assumptions;

@ More properties will be possible to prove in the future;
@ Working (library) code can be generated from the verified source;

Grazulis et al. Formally Validated S/W Melbourne, 2023

Vision for the future

@ A reusable F/LOSS library of verified crystallographic algorithms;
@ Stable and future-proof;

e Compatible with any languages and platforms (Ada, C(++), Go, Julia, Rust,
Perl, Python, WebAssembly, etc.);

@ Make software readable and understandable;

@ Make software a part of documentation for scientifc inferences along with
human readable texts (papers, presentations, etc.) and databases (COD, etc.)

Grazulis et al. Formally Validated S/W Melbourne, 2023 14 /17

Acknowledgements

VU LSC IBT (KICIS) VU MIF I1I (FMG) COD Advisory board
Andrius Merkys! Linas Laibinis! Daniel Chateigner
Antanas Vaitkus! Karolis Petrauskas! Robert T. Downs
Algirdas Grybauskas Irus Grinis Werner Kaminsky
Haroldas Giedra Armel Le Bail
Luca Lutterotti
Peter Moeck

Peter Murray-Rust
Miguel Quirés

Funding:
Lithuanian-French Program “Gilibert”; CECAM; RCoL grants S-MIP-20-21, S-MIP-23-87, VU Intramural
funding.

!Co-authors of this work

Grazulis et al. Formally Validated S/W Melbourne, 2023 15/17

Thank you!

Coordinates 2207377.cif
Original IUCr paper HTML

http://en.wikipedia.org/wiki/Topaz http://www.crystallography.net/2207377.html

A path to freedom: GNU — Linux — Ubuntu — MySQL — R — KIgX— TikZ — Beamer

http://en.wikipedia.org/wiki/Topaz
http://www.crystallography.net/2207377.html

| Grazulis, Saulius et al. (2009). “Crystallography Open Database — an open-access collection of crystal
structures”. In: Journal of Applied Crystallography 42, pp. 726-729. por: 10.1107/S0021889809016690. URL:
http://dx.doi.org/10.1107/50021889809016690.

| Grosse-Kunstleve, R. W. (1999). “Algorithms for deriving crystallographic space-group information.”. In: Acta
crystallographica. Section A, Foundations of crystallography 55, pp. 383-395. por:
10.1107/50108767398010186. URL: http://scripts.iucr.org/cgi-bin/paper?S0108767398010186.

\ Grosse-Kunstleve, R. W. et al. (1997). “Powder Diffraction Data and Crystal Chemical Information Combined in
an Automated Structure Determination Procedure for Zeolites”. In: J. Appl. Cryst. 30, pp. 985-995.

| Petrauskas, Karolis et al. (May 2022). “Proving the correctness of the algorithm for building a crystallographic
space group”. In: Journal of Applied Crystallography 55.3, pp. 515-525. por: 10.1107/s1600576722003107.

A path to freedom: GNU — Linux — Ubuntu — MySQL — R — KIgX— TikZ — Beamer

https://doi.org/10.1107/S0021889809016690
http://dx.doi.org/10.1107/S0021889809016690
https://doi.org/10.1107/S0108767398010186
http://scripts.iucr.org/cgi-bin/paper?S0108767398010186
https://doi.org/10.1107/s1600576722003107

	References

