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Abstract

◮ Crystallography Open Database (COD, [1]) is the largest open

access crystallographic database, housing over 500k crystal

structure entries.
◮ However, with the advent of machine learning methods and the

increased reliance on black box approaches [2] quality control
becomes vital to ensure:
◮ integrity and consistency of both chemical and crystallographic descriptions;

◮ presence and correctness of chemical representations such as SMILES [3] and

chemical names;

◮ correctness of chemical connectivity.

◮ Solutions show the potential to improve the data quality in the COD:
◮ cross-checking of crystallographic structures and chemical representations

detects mismatches due to potential errors [4];

◮ generated chemical names provide a reference point for name analysis and

comparison;

◮ derived covalent radii table provides insight into the choice of cutoff values [5].
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1. Connectivity is inferred from the coordinates (CIF files);

2. Crystal contents are broken down into molecular entities;

3. Chemical descriptions are extracted from chemical names, CML

files and SMILES;

4. Molecular entities of compared crystals are matched;

5. Corresponding molecular entities are overlaid.

Cross-check results

Source #1 Source #2 No. of pairs Matches

Coordinate-derived Chemical names 39 636 88%

Coordinate-derived CML 1551 89%

Coordinate-derived Expert-curated [3] 188 137 85%

Chemical names CML 1533 97%

Chemical names Expert-curated [3] 34 670 92%

◮ Analysis of a couple dozens of mismatches identified incomplete or

incorrect published chemical annotations [4].
◮ More interesting traits are dominated by differences in notation:

◮ aromatic form vs. Kekulé form;

◮ marked vs. unmarked metal coordination [6].
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Unsupervised method to derive a covalent radii table

◮ Uses Voronoi tessellation to find possible direct neighbours;

◮ Analyses distance distributions to locate van der Waals gap;

◮ Solves a system of equations to estimate covalent radii;

◮ Resulting radii table closely follows general trends of published

tables.
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Validation of the derived covalent radii table

Compared to expert-assigned connectivity [3], the derived radii:

◮ tend to miss bonds involving I, Mn and N;

◮ mark false-positive Mo-Mo, Ti-Ti, V-V and W-W bonds, similarly as

the table by Cordero et al. [7].

Generation of preferred IUPAC names (PINs)

Attempt to reproduce 3696 PINs from the IUPAC Blue Book [8]

ChemOnomatopist v0.10.0 STOUT v2.0 [9]

Correct PIN 1321 1132

Alternative name 781 1874

Incorrect 987 690

Refused 607 0

Time ≈ 4 min. ≈ 230 min.

◮ ChemOnomatopist performs best with:
◮ saturated and unsaturated acyclic and cyclic hydrocarbons;

◮ bicyclic compounds, including heterocycles;

◮ noncarbon acids.

◮ ChemOnomatopist needs improvement to handle:
◮ multiplication nomenclature;

◮ amides, amidines, esters and ethers;

◮ diazenes, hydrazines, hydrazides and urea compounds;

◮ charges and stereochemistry.

◮ STOUT most likely has been trained on older generation PINs.
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