Graph algorithms in crystallography and cheminformatics

Andrius Merkys

Grenoble, 2024

Vilnius University Institute of Biotechnology

Output of X-ray crystallography

Detection of connectivity

Molecular graph + 3D coordinates

Structural formula

Properties of molecular graphs

Properties

- undirected
- no self-loops
- non-multigraphs (no parallel edges)
- usually planar (Simmons & Maggio, 1981)

Colors

- vertices chemical element, sometimes: charge, isotope
- edges bond order (1, 2, 3, 4)

Stereochemistry

Cis/trans configuration around double bonds

► Tetrahedral chirality

http://opensmiles.org/opensmiles.html OpenSMILES specification Cis/trans configuration in molecular graphs

 Spatial relations can be represented by additional colored edges

Merkys et al., 2023

Tetrahedral chirality in molecular graphs

Some relations need additional vertices

Merkys et al., 2023

Cycles

Importance

- hold the structure (limit the conformational space)
- ► base for aromaticity

Aromatic cycles

Smallest set of smallest rings (SSSR)

 $Closed \ path \in SSSR \ iff \ there \ are \ no \ chords$

Downs et al. 1989 algorithm:

- 1. choose L length of the largest cycle
- 2. find all paths from all vertices (depth-first search)
- 3. search is terminated when *L* is reached
- 4. search is terminated when other criteria for SSSR are violated

Cycles. Example: cucurbituril

- ▶ $n \times 2$ five-membered cycles
- \triangleright *n* eight-membered cycles
- two $n \times 4$ -membered cycles

https://commons.wikimedia.org/wiki/File:Models_of_cucurbiturils.jpg M stone at English Wikipedia, CC-BY-SA 3.0 https://commons.wikimedia.org/wiki/File:CucurbiturilSynthesis.svg V8rik at English Wikipedia, CC-BY-SA 3.0

All cycles in a graph

All closed paths without same vertex appearing more than once

Hanser, Jauffret, Kaufmann 1996 algorithm:

- 1. choose vertex v and remove it from graph
- 2. connect *v* neighbours with edges representing paths (through *v*) between them
- 3. every self-loop found is a cycle in the original graph
- 4. loop to step 1 until graph becomes empty

All cycles in a graph (2)

Examples

- cube 28 cycles
- ▶ fullerene (a.k.a. C_{60}) 8018 cycles

Problems

- computationally expensive
- ▶ no known low-level (C/C++) implementations

Search and comparison

Search – look for a matching subgraph

- boils down to subgraph isomorphism problem
- ▶ property vectors (a.k.a. fingerprints) may be used

Comparison - check if two graphs match

- identity graph isomorphism problem
- ▶ property vectors (a.k.a. fingerprints) may be used

Property vectors a.k.a. fingerprints

Tanimoto similarity index

$$T_{s}(A,B) = rac{\sum\limits_{i} A_{i} \wedge B_{i}}{\sum\limits_{i} A_{i} \vee B_{i}}$$

Example:

$$T_s(1001, 1010) = rac{1}{3}$$

Open Babel v3.1.1 uses:

- ► FP3 55 properties
- ► FP4 309 properties

Molecular graph representation formats

- ► IUPAC preferred name (*Pyridine*)
 - uniquely defines a compound
 - difficult to read/write by computer
- SMILES (clccnccl)
 - easy to read/write by computer
 - could be read/write by human
 - many competing standards
 - not a unique representation

▶ InChI (InChI=1S/C5H5N/c1-2-4-6-5-3-1/h1-5H)

- uniquely defines a compound
- difficult to read/write by human
- sole I/O library is non-free software*

IUPAC names

Reading							
	OPSIN						
Wri	ting						
	ChemAxon						
	Lexichem						
	Nomenclator						
	STOUT						

ChemOnomatopist

	ChemOnomatopist v0.9.0	STOUT v2.0
Correct PIN	1262	1132
Alternative name	752	1874
Incorrect	1074	690
Refused	608	0
Time	pprox 4 min.	pprox 230 min.

SMILES format

- depicts spanning tree of a graph
- vertices are named after chemical elements
- branches from main chain are written in parentheses
- edges not in spanning tree are marked by numbers
- bonds of order 2 or more are depicted by =, #, \$

https://commons.wikimedia.org/wiki/File:SMILES.png Fdardel & DMacks, CC-BY-SA 3.0

SMILES – representation of a molecular graph

- aromatic atoms are written in lowercase
- cis/trans configuration is marked with up/down edges
- tetrahedral chirality is marked with @ or @@ and establishing atom enumeration order

support for chirality for higher coordination numbers

http://opensmiles.org/opensmiles.html OpenSMILES specification

Morgan's algorithm

Steps

1.
$$S_0(v) = \deg(v), \forall v \in V$$

2. $S_i(v) = \sum S_{i-1}(n)$, sum over all neighbours of v
3. ...

Loop is stopped when the number of distinct $S_i(v)$ stops increasing.

Equivalence classes are defined by $S_i(v)$ values.

Morgan, 1965

Morgan's algorithm. Example

Molecular graph isomorphism

▶ Faulon's algorithm (Faulon, 1998)

- input simple graph
- $O(N^2)$, observed on carbon nanotubes

Nauty (McKay & Piperno, 2014)

- supports vertices with attributes (color)
- employed in InChI
- O(N) (Faulon, Collins & Carr, 2004)

Polymeric molecules

Construction of molecular graph

- 1. choose a representing "monomer" (how?)
- 2. redirect boundary-crossing edges back to the "monomer"
 - parallel edges or self-loops may appear
 - multigraphs may be represented by line graphs

Representing polymer molecules with quotient graphs

Fig. 1 Graphene net and its quotient graph. a Graphene net in 2D space; b The quotient graph of graphene net. n_1 , n_2 are nodes. e_1 , e_2 , e_3 are edges. c_1 , c_2 are the two basic cycles of graphene net.

Gao et al., 2020

Chemical annotation of X-ray structures

https://www.crystallography.net/archives/2021/posters/IUCr-XXV/poster-1476.pdf Merkys et al., poster presentation at IUCr25

Comparison of molecular graphs

https://www.crystallography.net/archives/2021/posters/IUCr-XXV/poster-1476.pdf Merkys et al., poster presentation at IUCr25

Author-provided vs. curated annotations in COD

ŝ

#	H atoms	aromaticity	atom types	charge	chirality	cis/trans	order	extra moieti
18424		×					×	
2990		\times				×	\times	
2803		×		×			\times	
2191								
1878		\times			×		\times	
754					\times			
467	\times	×		\times			\times	
464		×		\times		\times	\times	
381	×			×				
270		×					×	×
250	×	×					×	
192		×		×	×		×	
164		×			×	×	×	
145						×		
116				×			×	
85	×		×				×	
78								×
75	×	×				×	×	
56			×				×	
45				×				
37	×						×	
36	×							
30		×		×			×	×
34	×			×			×	
33	×	×		× 1			X	×
32474	LOTA	1 (471	not sr	wwn r	иеге јо	r previ	iy)	
2196	unk	nown						

Problems

- What is a bond?
- How to describe interactions between more than two atoms?
- ▶ How to uniquely represent aromatic cycles?