#------------------------------------------------------------------------------ #$Date: 2010-01-30 15:59:17 +0200 (Sat, 30 Jan 2010) $ #$Revision: 966 $ #$URL: file:///home/coder/svn-repositories/cod/cif/1/1100068.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # data_1100068 loop_ _publ_author_name _publ_author_address '(The late) Marten G. Barker' ; School of Chemistry University of Nottingham Nottingham NG7 2RD ; 'Francesconi, M. Grazia ' ; School of Chemistry University of Nottingham Nottingham NG7 2RD ; ' Shutt, Thomas H. ' ; School of Chemistry University of Nottingham Nottingham NG7 2RD ; 'Claire Wilson' ; School of Chemistry University of Nottingham Nottingham NG7 2RD ; _publ_contact_author_address ; School of Chemistry University of Nottingham Nottingham NG7 2RD ; _publ_contact_author_email claire.wilson@nott.ac.uk _publ_contact_author_fax +44-115-951-3563 _publ_contact_author_name 'Claire Wilson' _publ_contact_author_phone +44-115-951-3047 _publ_contact_letter ; We would like this submission to be considered for publication in Acta Crystallographic section E. We are submitting a second closely related structure at the same time, that of Ba4OI6, and would be grateful if the two could be handled together and if accepted published together. We also ask that, if accepted, the two papers can be cross referenced as indicated in the text. ; _publ_requested_category ei _publ_requested_journal 'Acta Crystallographica Section E' _publ_section_abstract ; Strontium oxide iodide, Sr~4~OI~6~, has been prepared by a solid state reaction and shown to be isotructural with A~4~OCl~6~ where A is Ba or Sr and with Ba~4~OI~6~. ; _publ_section_comment ; Alkaline earth oxide chlorides and oxide bromides, of general formula A~4~OX~6~ (A = alkaline earth; X=Cl^-^, Br^-^) are known for their luminescence properties, when the alkaline earth site is doped with small amounts of Eu^2+^ or Pb^2+^ (Schipper et al, 1992). This family has now been extended to the strontium oxide iodide compounds Sr~4~OI~6~. Sr~4~OI~6~ was prepared by a solid state reaction and is isostructural with Sr~4~OCl~6~ (Hagemann et al, 1996)and Ba~4~OCl~6~ (von Bergenhoff & Goost, 1970) and Ba~4~OI~6~ (Barker et al, 2001). The oxygen is four-coordinated by Sr cations, the iodine is four- and five-coordinated by Sr cations and the Sr is eight-coordinated by one oxygen and seven iodine anions at one site and seven coordinated by one oxygen and six iodine anions at the other. ; _publ_section_references ; Altomare, A., Burla, M.C., Camalli, M., Cascarano, G, Giacovazzo, C., Guagliardi, A., Moliterni, A.G.G., Polidori, G. & Spagna, R. (1999). SIR99,J. Appl. Cryst. 32, 115-119. Barker, M. G. , Francesconi, M. G., & Wilson, C. (2001) submitted to Acta Cryst. section E. Bergenhoff, Von G. & Goost, L., (1970). Acta Cryst. B26, 19. Bruker (1996). SADABS. Program for applying absorption correections to area detector data. Bruker AXS, Inc., Madison, Wisconsin, USA. Bruker (1998). SMART Area-Detector Software Package. Version 5.054. Bruker AXS, Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT frame integration software. Version 6.01. Bruker AXS, Inc., Madison, Wisconsin, USA. Dowty, E. (1998). ATOMS. Version 4.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA. Farrugia, L.J. (1999). J. Appl. Cryst. 32, 837-838. Hagemann, H., Kubel, F. & Bill, H. (1996). Eur. J. Solid State Inorg. Chem. 33, 1101-1109. Schipper, W. J., Vroon Z. A. E. P., Blasse G. & Schleid, T. (1992). Chem. Mater. 4, 688-692. Sheldrick, G.M.(1997). SHELXL97, Univ. of G\"ottingen, Germany. Spek, A.L. (2001). PLATON, program for the automated analysis of molecular geometry. Univ of Utrecht, The Netherlands. ; _publ_section_title ' Strontium Oxide Iodide' _chemical_formula_moiety '6(I), O, 4(Sr)' _chemical_formula_sum 'I6 O Sr4' _chemical_formula_weight 1127.88 _chemical_melting_point ? _chemical_name_common 'strontium oxide iodide' _chemical_name_systematic ; ? ; _symmetry_cell_setting hexagonal _symmetry_space_group_name_H-M P63mc _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _audit_creation_method SHELXL-97 _cell_angle_alpha 90.000(0) _cell_angle_beta 90.000(0) _cell_angle_gamma 120.000(0) _cell_formula_units_Z 2 _cell_length_a 10.747(1) _cell_length_b 10.747(1) _cell_length_c 7.8678(9) _cell_measurement_reflns_used 841 _cell_measurement_temperature 150(2) _cell_measurement_theta_max 27.58 _cell_measurement_theta_min 5.9 _cell_volume 787.0(3) _computing_cell_refinement 'Bruker SAINT version 6.02a (Bruker, 2000)' _computing_data_collection 'Bruker SMART version 5.054 (Bruker, 1998)' _computing_data_reduction 'Bruker SAINT; Bruker SHELXTL (Bruker, 1997)' _computing_molecular_graphics 'ATOMS (Dowty, 1998)' _computing_publication_material 'SHELXL-97; PLATON (Spek, 2000)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997); WINGX (Farrugia, 1999)' _computing_structure_solution 'SIR97, (Altomare et al, 1999)' _diffrn_ambient_temperature 150(2) _diffrn_detector_area_resol_mean ? _diffrn_measured_fraction_theta_full 0.944 _diffrn_measured_fraction_theta_max 0.944 _diffrn_measurement_device_type 'Bruker SMART1000 CCD area detector' _diffrn_measurement_method omega _diffrn_radiation_monochromator graphite _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71069 _diffrn_reflns_av_R_equivalents 0.054 _diffrn_reflns_av_sigmaI/netI 0.000 _diffrn_reflns_limit_h_max 6 _diffrn_reflns_limit_h_min -13 _diffrn_reflns_limit_k_max 4 _diffrn_reflns_limit_k_min -10 _diffrn_reflns_limit_l_max 10 _diffrn_reflns_limit_l_min -9 _diffrn_reflns_number 3527 _diffrn_reflns_theta_full 28.97 _diffrn_reflns_theta_max 27.58 _diffrn_reflns_theta_min 5.9 _diffrn_standards_decay_% none _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_number ? _exptl_absorpt_coefficient_mu 25.213 _exptl_absorpt_correction_T_max 0.365 _exptl_absorpt_correction_T_min 0.272 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details 'SADABS, Bruker (1999)' _exptl_crystal_colour colourless _exptl_crystal_density_diffrn 4.760 _exptl_crystal_density_meas ? _exptl_crystal_density_method 'not measured' _exptl_crystal_description block _exptl_crystal_F_000 956 _exptl_crystal_size_max 0.05 _exptl_crystal_size_mid 0.04 _exptl_crystal_size_min 0.04 _exptl_crystal_thermal_history 'heated at 1000C for 24 hours; cooled to room temperature at 1C/hour' _exptl_special_details ; SrO and SrI2 powders were mixed in stoichiometric proportions and placed in a nickel crucible. The mixture was then heated at 1000C for 24 hours in a silica tube, under flowing nitrogen. The product was cooled to room temperature at 1C/hour. ; _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; _refine_diff_density_max 1.271 _refine_diff_density_min -0.986 _refine_diff_density_rms 0.210 _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.064(18) _refine_ls_extinction_coef ? _refine_ls_extinction_method none _refine_ls_goodness_of_fit_ref 0.937 _refine_ls_matrix_type full _refine_ls_number_parameters 25 _refine_ls_number_reflns 721 _refine_ls_number_restraints 1 _refine_ls_restrained_S_all 0.936 _refine_ls_R_factor_all 0.0429 _refine_ls_R_factor_gt 0.0297 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 _refine_ls_structure_factor_coef Fsqd _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0206P)^2^] where P=(Fo^2^+2Fc^2^)/3' _refine_ls_weighting_scheme calc _refine_ls_wR_factor_gt 0.0522 _refine_ls_wR_factor_ref 0.0548 _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _reflns_number_gt 586 _reflns_number_total 776 _reflns_threshold_expression >2sigma(I) #BEGIN Tags that were not found in dictionaries: _publ_figure_captions ; [001] projection of the Sr~4~OI~6~ structure showing the I^-^ anions (blue) and the O-Sr tetrahedra ; #END Tags that were not found in dictionaries loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Sr Sr -1.5307 3.2498 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z+1/2' '-y, x-y, z' '-x+y, -x, z' 'x-y, x, z+1/2' 'y, -x+y, z+1/2' '-x+y, y, z' 'x, x-y, z' '-y, -x, z' 'y, x, z+1/2' '-x, -x+y, z+1/2' 'x-y, -y, z+1/2' loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group I1 I 0.25533(9) 0.12766(5) 0.36865(10) 0.0175(2) Uani 1 2 d S . . I2 I 0.46542(5) 0.53458(5) 0.17690(10) 0.0174(2) Uani 1 2 d S . . Sr1 Sr 0.21157(7) 0.42313(14) 0.48599(16) 0.0172(3) Uani 1 2 d S . . Sr2 Sr 0.3333 0.6667 0.8847(3) 0.0290(6) Uani 1 6 d S . . O1 O 0.3333 0.6667 0.584(3) 0.031(5) Uani 1 6 d S . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 I1 0.0195(5) 0.0166(3) 0.0174(5) 0.0004(2) 0.0008(5) 0.0098(2) I2 0.0187(3) 0.0187(3) 0.0129(4) -0.0015(2) 0.0015(2) 0.0078(4) Sr1 0.0181(5) 0.0200(7) 0.0142(7) -0.0008(6) -0.0004(3) 0.0100(4) Sr2 0.0391(10) 0.0391(10) 0.0088(12) 0.000 0.000 0.0196(5) O1 0.027(7) 0.027(7) 0.038(12) 0.000 0.000 0.014(4) loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag I1 Sr1 3.392(2) 6_554 ? I1 Sr1 3.5567(19) . ? I1 Sr1 3.5567(19) 4 ? I1 Sr2 3.830(2) 2_664 ? I2 Sr2 3.366(2) 1_554 ? I2 Sr1 3.3947(18) 3_665 ? I2 Sr1 3.3947(18) . ? I2 Sr1 3.5967(17) 6_554 ? I2 Sr1 3.5967(17) 2_664 ? Sr1 O1 2.393(6) . ? Sr1 I1 3.392(2) 5 ? Sr1 I2 3.3947(18) 4_565 ? Sr1 I1 3.5567(19) 3 ? Sr1 I2 3.5967(17) 2_665 ? Sr1 I2 3.5967(17) 5 ? Sr1 Sr2 3.870(3) . ? Sr1 Sr1 3.926(3) 3_665 ? Sr1 Sr1 3.926(3) 4_565 ? Sr2 O1 2.37(2) . ? Sr2 I2 3.366(2) 3_666 ? Sr2 I2 3.366(2) 4_566 ? Sr2 I2 3.366(2) 1_556 ? Sr2 I1 3.830(2) 6_565 ? Sr2 I1 3.830(2) 5 ? Sr2 I1 3.830(2) 2_665 ? Sr2 Sr1 3.870(3) 4_565 ? Sr2 Sr1 3.870(3) 3_665 ? O1 Sr1 2.393(6) 4_565 ? O1 Sr1 2.393(6) 3_665 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Sr1 I1 Sr1 106.45(2) 6_554 . ? Sr1 I1 Sr1 106.45(2) 6_554 4 ? Sr1 I1 Sr1 147.04(5) . 4 ? Sr1 I1 Sr2 64.47(5) 6_554 2_664 ? Sr1 I1 Sr2 96.08(2) . 2_664 ? Sr1 I1 Sr2 96.08(2) 4 2_664 ? Sr2 I2 Sr1 101.78(5) 1_554 3_665 ? Sr2 I2 Sr1 101.78(5) 1_554 . ? Sr1 I2 Sr1 70.65(6) 3_665 . ? Sr2 I2 Sr1 104.20(5) 1_554 6_554 ? Sr1 I2 Sr1 153.95(4) 3_665 6_554 ? Sr1 I2 Sr1 105.50(4) . 6_554 ? Sr2 I2 Sr1 104.20(5) 1_554 2_664 ? Sr1 I2 Sr1 105.50(4) 3_665 2_664 ? Sr1 I2 Sr1 153.95(4) . 2_664 ? Sr1 I2 Sr1 66.15(4) 6_554 2_664 ? O1 Sr1 I1 98.7(5) . 5 ? O1 Sr1 I2 86.6(4) . 4_565 ? I1 Sr1 I2 140.95(3) 5 4_565 ? O1 Sr1 I2 86.6(4) . . ? I1 Sr1 I2 140.95(3) 5 . ? I2 Sr1 I2 77.69(5) 4_565 . ? O1 Sr1 I1 144.645(17) . 3 ? I1 Sr1 I1 82.78(4) 5 3 ? I2 Sr1 I1 71.78(3) 4_565 3 ? I2 Sr1 I1 114.41(5) . 3 ? O1 Sr1 I1 144.645(18) . . ? I1 Sr1 I1 82.78(4) 5 . ? I2 Sr1 I1 114.41(5) 4_565 . ? I2 Sr1 I1 71.78(3) . . ? I1 Sr1 I1 70.71(3) 3 . ? O1 Sr1 I2 76.25(17) . 2_665 ? I1 Sr1 I2 71.32(3) 5 2_665 ? I2 Sr1 I2 146.26(4) 4_565 2_665 ? I2 Sr1 I2 72.54(4) . 2_665 ? I1 Sr1 I2 135.64(4) 3 2_665 ? I1 Sr1 I2 70.80(3) . 2_665 ? O1 Sr1 I2 76.25(17) . 5 ? I1 Sr1 I2 71.32(3) 5 5 ? I2 Sr1 I2 72.54(4) 4_565 5 ? I2 Sr1 I2 146.26(4) . 5 ? I1 Sr1 I2 70.80(3) 3 5 ? I1 Sr1 I2 135.64(4) . 5 ? I2 Sr1 I2 128.84(6) 2_665 5 ? O1 Sr1 Sr2 35.4(5) . . ? I1 Sr1 Sr2 63.27(5) 5 . ? I2 Sr1 Sr2 113.68(5) 4_565 . ? I2 Sr1 Sr2 113.68(5) . . ? I1 Sr1 Sr2 131.55(3) 3 . ? I1 Sr1 Sr2 131.55(3) . . ? I2 Sr1 Sr2 66.26(3) 2_665 . ? I2 Sr1 Sr2 66.26(3) 5 . ? O1 Sr1 Sr1 34.9(2) . 3_665 ? I1 Sr1 Sr1 113.50(3) 5 3_665 ? I2 Sr1 Sr1 92.81(2) 4_565 3_665 ? I2 Sr1 Sr1 54.67(3) . 3_665 ? I1 Sr1 Sr1 163.52(2) 3 3_665 ? I1 Sr1 Sr1 112.351(18) . 3_665 ? I2 Sr1 Sr1 56.92(2) 2_665 3_665 ? I2 Sr1 Sr1 110.87(2) 5 3_665 ? Sr2 Sr1 Sr1 59.52(3) . 3_665 ? O1 Sr1 Sr1 34.9(2) . 4_565 ? I1 Sr1 Sr1 113.50(3) 5 4_565 ? I2 Sr1 Sr1 54.67(3) 4_565 4_565 ? I2 Sr1 Sr1 92.81(2) . 4_565 ? I1 Sr1 Sr1 112.351(18) 3 4_565 ? I1 Sr1 Sr1 163.52(2) . 4_565 ? I2 Sr1 Sr1 110.87(2) 2_665 4_565 ? I2 Sr1 Sr1 56.92(2) 5 4_565 ? Sr2 Sr1 Sr1 59.52(3) . 4_565 ? Sr1 Sr1 Sr1 60.0 3_665 4_565 ? O1 Sr2 I2 133.08(4) . 3_666 ? O1 Sr2 I2 133.08(4) . 4_566 ? I2 Sr2 I2 78.48(6) 3_666 4_566 ? O1 Sr2 I2 133.08(4) . 1_556 ? I2 Sr2 I2 78.48(6) 3_666 1_556 ? I2 Sr2 I2 78.48(6) 4_566 1_556 ? O1 Sr2 I1 88.11(4) . 6_565 ? I2 Sr2 I1 69.97(2) 3_666 6_565 ? I2 Sr2 I1 69.97(2) 4_566 6_565 ? I2 Sr2 I1 138.80(8) 1_556 6_565 ? O1 Sr2 I1 88.11(4) . 5 ? I2 Sr2 I1 138.80(8) 3_666 5 ? I2 Sr2 I1 69.97(2) 4_566 5 ? I2 Sr2 I1 69.97(2) 1_556 5 ? I1 Sr2 I1 119.893(5) 6_565 5 ? O1 Sr2 I1 88.11(4) . 2_665 ? I2 Sr2 I1 69.97(2) 3_666 2_665 ? I2 Sr2 I1 138.80(8) 4_566 2_665 ? I2 Sr2 I1 69.97(2) 1_556 2_665 ? I1 Sr2 I1 119.893(5) 6_565 2_665 ? I1 Sr2 I1 119.893(5) 5 2_665 ? O1 Sr2 Sr1 35.85(4) . 4_565 ? I2 Sr2 Sr1 109.86(4) 3_666 4_565 ? I2 Sr2 Sr1 109.86(4) 4_566 4_565 ? I2 Sr2 Sr1 168.93(6) 1_556 4_565 ? I1 Sr2 Sr1 52.26(3) 6_565 4_565 ? I1 Sr2 Sr1 105.43(5) 5 4_565 ? I1 Sr2 Sr1 105.43(5) 2_665 4_565 ? O1 Sr2 Sr1 35.85(4) . . ? I2 Sr2 Sr1 168.93(6) 3_666 . ? I2 Sr2 Sr1 109.86(4) 4_566 . ? I2 Sr2 Sr1 109.86(4) 1_556 . ? I1 Sr2 Sr1 105.43(5) 6_565 . ? I1 Sr2 Sr1 52.26(3) 5 . ? I1 Sr2 Sr1 105.43(5) 2_665 . ? Sr1 Sr2 Sr1 60.96(6) 4_565 . ? O1 Sr2 Sr1 35.85(4) . 3_665 ? I2 Sr2 Sr1 109.86(4) 3_666 3_665 ? I2 Sr2 Sr1 168.93(6) 4_566 3_665 ? I2 Sr2 Sr1 109.86(4) 1_556 3_665 ? I1 Sr2 Sr1 105.43(5) 6_565 3_665 ? I1 Sr2 Sr1 105.43(5) 5 3_665 ? I1 Sr2 Sr1 52.26(3) 2_665 3_665 ? Sr1 Sr2 Sr1 60.96(6) 4_565 3_665 ? Sr1 Sr2 Sr1 60.96(6) . 3_665 ? Sr2 O1 Sr1 108.7(5) . 4_565 ? Sr2 O1 Sr1 108.7(5) . . ? Sr1 O1 Sr1 110.2(4) 4_565 . ? Sr2 O1 Sr1 108.7(5) . 3_665 ? Sr1 O1 Sr1 110.2(4) 4_565 3_665 ? Sr1 O1 Sr1 110.2(4) . 3_665 ? _cod_database_code 1100068